激光写光电子学进展

基于空穴存储层的深紫外激光二极管性能优化

王梦真¹,王瑶¹,魏士钦¹,王芳^{1,2},全智¹,刘玉怀^{1,2,3*} ¹郑州大学信息工程学院电子材料与系统国际联合研究中心,河南郑州 450001; ²郑州唯独电子科技有限公司,河南郑州 450001; ³郑州大学产业技术研究院有限公司,河南郑州 450001

摘要为改善深紫外激光二极管(DUV-LD)有源区内空穴注入效率低的问题,在传统 DUV-LD 结构基础上引入空穴存储层(HRL),并将 HRL改为 Al摩尔分数从 n 区到 p 区递减的五阶梯 HRL。用 Crosslight 公司的 Lastip 软件对该 HRL进行数值研究,结果表明,该结构可以获得更高的载流子辐射复合速率和更低的阈值电流。当五阶梯 Al摩尔分数递减的HRL位于 DUV-LD 最后一层量子势全和上波导层之间时,电子泄漏最小,器件性能得到明显改善。 关键词 激光光学;深紫外激光二极管;空穴存储层;空穴注入效率;电子泄漏 中图分类号 O472 文献标志码 A DOI: 10.3788/LOP202259.2314004

Performance Optimization of Deep-Ultraviolet Laser Diodes Based on Hole Reservoir Layer

Wang Mengzhen¹, Wang Yao¹, Wei Shiqin¹, Wang Fang^{1,2}, Quan Zhi¹, Liu Yuhuai^{1,2,3*}

¹National Center for International Joint Research of Electronic Materials and Systems, School of Information Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China; ²Zhengzhou Way Do Electronics Co., Ltd., Zhengzhou 450001, Henan, China; ³Research Institute of Industrial Technology, School of Information Engineering, Zhengzhou University,

Zhengzhou 450001, Henan, China

Abstract In this paper, to improve the problem of low hole injection efficiency in the active region of a deep-ultraviolet laser diode (DUV-LD), a hole reservoir layer (HRL) is introduced based on the conventional DUV-LD and the HRL is changed to a five-step HRL with a decreasing Al mole fraction from n-region to the p-region. The HRL is numerically examined using Crosslight's Lastip software, which revealed that the application of the structure can achieve a higher carrier radiation recombination rate and a lower threshold current. When a five-step HRL with decreasing Al mole fraction is located between the last quantum barrier layer of DUV-LD and the upper waveguide layer, the electron leakage is minimal and the device performance is significantly improved.

Key words laser optics; deep-ultraviolet laser diode; hole reservoir layer; hole injection efficiency; electron leakage

1 引 言

深紫外半导体激光二极管(DUV-LD)在化学分析、生物试剂检测、紫外固化、通信和雷达等领域有着 广泛的应用前景^[1-3]。AlGaN材料的禁带宽度相对较 宽,通过调节材料中Al的摩尔分数就能使激光二极 管激射出深紫外波段激光(波长小于280 nm)^[4-6]。随 着AlGaN中Al摩尔分数的提高,材料的外延生长以 及器件的后续制备难度越来越大,制备高性能的高 Al 摩尔分数 AlGaN 基 DUV-LD 仍面临着巨大挑 战^[7-8]。如:材料的外延生长技术有限,高质量 AlGaN 材料的制备难度大^[9-10];随着 Al摩尔分数的增加,Mg 受主在 p-AlGaN 中的电离能也逐渐增强,使 AlGaN 材料的掺杂和激活难度增大,空穴注入效率非常 低^[11-13];电子和空穴很容易越过有源区在 n 区和 p 区 泄漏^[14]。

收稿日期: 2021-10-15; 修回日期: 2021-11-15; 录用日期: 2021-11-16

基金项目:国家重点研发计划(2016YFE0118400)、2019年度宁波市"科技创新2025"重大专项(2019B10129)

通信作者: *ieyhliu@zzu. edu. cn

研究论文

空穴相对电子的有效质量大、迁移率低,因此有 源区空穴的注入效率特别低且分布不均匀^[15-16]。针 对有源区内空穴注入效率低的问题,可通过在发光二 极管(LED)中引入空穴阻挡层^[17]、A1摩尔分数线性 减小的p-AlGaN空穴注入层^[18]、锯齿状p-AlGaN空穴 注入层^[19]、p-AlGaN/AlGaN/p-AlGaN电子阻挡层 (EBL)^[20]解决。如:Lu等^[21]在GaN基LED中新增空 穴存储层(HRL)提高空穴注入效率,研究结果表明, 有源区内的空穴浓度得到了显著提高;Hou等^[22]在 绿光激光二极管最后一层量子势垒(LQB)和上波导 层(UWG)之间插入HRL有效提高了空穴的注入 效率。

HRL的应用在发光二极管和绿光激光二极管中都已得到证实,能有效改善空穴注入问题、优化器件性能,但在DUV-LD中的应用还没有相关验证。本文研究了在AlGaN基DUV-LD中引入HRL并将矩形HRL优化为五阶梯Al摩尔分数递减的HRL。仿真结果表明,改良后的HRL能有效提高有源区内的空穴浓度,器件性能也得到了明显优化。

2 仿真模型以及参数

图1为三种DUV-LD的结构。在DUV-LD参考结 构A中:n区由0.1 µm厚的n-Alo 75Gao 25N包覆层、1 µm 厚的 n-Al_{0.75}Ga_{0.25}N 电子注入层、0.11 µm 厚的 n-Al。G8Ga。32N下波导层组成;两周期多量子阱为3个 10 nm 厚的不掺杂 Al_{0.68}Ga_{0.32}N 量子势 全和 2 个 3 nm 厚 的不掺杂 Al_{0.58}Ga_{0.42}N 量子阱; p 区由 0.07 μm 厚的 p-Al。GGa。32N上波导层、0.01 µm厚的p-Al。Ga。1N电子 阻挡层、0.4 µm厚的 p-Alo 75Gao 75N 空穴注入层、 0.1 μm 厚的 p-Al_{0.8}Ga_{0.2}N 包覆层(记 n-AlGaN 为 Si 掺 杂,p-AlGaN为Mg掺杂)组成。在结构A的基础上引 人 Mg 掺杂的 0.01 μm 厚 p-Al_{0.8}Ga_{0.2}N 矩形空穴存储层 得到结构B。将矩形空穴存储层改为五阶梯Al摩尔分 数递减的p-Al_xGa_{1-x}N(x指AlGaN材料中Al的摩尔分 数,分别为0.80、0.78、0.76、0.74、0.72)层,记为结构 C。模拟仿真中设置的参数:激光器的波长为267 nm; 激光器的腔长为530 µm;器件宽度为3 µm;左右镜面折 射率为30%;内部损耗为2400;工作温度为300 K^[23]。 模拟中采用的半导体材料参数根据文献[24]设置。

图1 三种 DUV-LD 的截面示意图

Fig. 1 Schematic diagram of the cross-section of three DUV-LDs

3 仿真结果以及分析讨论

提高p区的空穴浓度能有效提高DUV-LD的受激 辐射复合速率。图2为三种DUV-LD有源区内的载流 子分布对比图。从图2(a)可以发现,五阶梯HRL诱导 产生的空穴最多,注入到量子阱中的空穴也最多。此 外,HRL的引入可以阻碍电子泄漏到p区。原因是五 阶梯HRL的引入缓解了电子阻挡层因极化效应产生 的能带弯曲,增加了电子有效势全高度。从图2(b)、 图2(c)可以发现,结构C的有源区内电子浓度E、空穴 浓度H最高,其辐射复合速率也最高,如图2(d) 所示。

图 3 为三个 DUV-LD 的电压-电流(V-I)和功率-

电流(P-I)曲线。从图 3(a)可以发现,HRL的引入减 小了器件阈值电压(V_{th}),且结构C器件的阈值电压最 小,为4.65 V,阻值最高,为3Ω。原因是空穴存储层 的引入增加了激光器的厚度以及电子阻挡层的势垒高 度。从图 3(b)可以发现,结构 B和结构C的斜率效率 (SE)分别为1.72和1.70,均高于结构A(斜率效率为 1.66)。斜率效率越高表明DUV-LD的输出功率随电 流增加得越快。结构C的阈值电流(*I*_{th})为24.71 mA, 相比结构 B和结构A分别减小了7.2%和6.8%。其 次,在注入电流的作用下,有源区内受激辐射不断增 强,而辐射在谐振腔内来回反射时存在能量损耗,可分 为输出损耗和腔面损耗^[25]。激光器的增益可表示为

图 2 三种 DUV-LD 有源区的载流子分布。(a)引入 HRL 后有源区的空穴浓度;(b)有源区的电子浓度;(c)有源区的空穴浓度; (d)有源区的辐射复合速率

Fig. 2 Carrier distributions in the active regions of three DUV-LDs. (a) Hole concentration of the active region after introducing HRL;(b) electron concentration of the active region; (c) hole concentration of the active region; (d) radiative recombination rate of the active region

图 3 三种 DUV-LD 的电学特性。(a)V-I曲线;(b)P-I曲线 Fig. 3 Electrical properties of three DUV-LDs. (a) V-I curve; (b) P-I curve

$$g_{\rm th} = \alpha + \frac{1}{2L} \ln\left(\frac{1}{R_1 R_2}\right),\tag{1}$$

式中:g_{th}为激光器的阈值增益;L为腔长;a为内部损耗 系数;R₁、R₂分别为前后腔面的反射系数^[26-27]。为使激 光器有效工作,就必须降低阈值电流,从而在其他参数 一定的情况下减小内部损耗,降低激光器的阈值电流。 仿真结果表明,结构C的阈值电流最小,其内部损耗系 数最小,电学特性也更好。

图 4 为三种 DUV-LD 的光电转换效率。可以发

现,随着注入电流的增大,结构A的光电转换效率为 35%,结构B的光电转换效率为38%,结构C的光电转 换效率先急剧增大,后减小,最终稳定在37%。原因是 改进后的激光二极管降低了阈值电流和阈值电压,提 高了输出功率,而结构B的输出功率稍高于结构C。

为了进一步研究具有更好光电特性的结构C,对 五阶梯Al摩尔分数递减的HRL(HRLC)在DUV-LD 不同位置的情况进行了仿真分析,如图5所示。可以 发现,五阶梯HRL位于LQB和UWG之间时,DUV-

第 59 卷 第 23 期/2022 年 12 月/激光与光电子学进展

LD的性能最好。

载流子(电子和空穴)的有效势垒高度定义为载流 子的能带边缘(导带和价带)和准费米能级之间的能量 差^[28]。优化其势垒高度可改善有源区内的载流子浓 度。图6为五阶梯HRL在DUV-LD中三个不同位置 的能带图。可以发现:五阶梯HRL位于LQB和UWG 之间时电子阻挡层的电子有效势垒高度最高为 695.35 meV,高于位置2的电子势垒高度(539.07 meV) 以及位置3的电子势垒高度(556.63 meV);空穴势垒高度 (145.74 meV)低于位置2的空穴势垒高度(184.37 meV) 以及位置3的空穴势垒高度(156.26 meV),电子阻挡 层电子势垒高度的增高以及空穴势垒高度的降低可有 效阻碍电子泄漏和提高空穴注入。

图 6 五阶梯 HRL 在 DUV-LD 中不同位置的能带图。(a)位置 1;(b)位置 2;(c)位置 3 Fig. 6 Band diagram of five-stepped HRL at different positions in DUV-LD. (a) Position 1; (b) position 2; (c) position 3

p区包覆层(p-CL)的电子浓度反映了有源区电子 泄漏问题,电子泄漏指给DUV-LD注入电流后,电子

从n区注入到有源区,一部分电子在量子阱中与空穴 辐射复合,另一部分电子越过有源区溢出到p区,泄漏

研究论文

的电子在p区与空穴发生非辐射性复合,同时阻碍了 空穴向有源区的注入^[29]。从图7(a)可以发现,五阶梯 HRL在DUV-LD位置1时的电子泄漏最少,原因是电 子有效势垒高度的提高有效阻碍了电子泄漏。从 图 7(b)可以发现,五阶梯 HRL 位于位置1时有源区内 的电子空穴浓度最高,与其能带图的仿真结果一致。 此外,有源区内电子空穴浓度的增多可有效提高其辐 射复合速率,如图 7(c)所示。

图 7 五阶梯 HRL 在 DUV-LD 中不同位置时有源区的载流子分布。(a)电子浓度分布;(b)量子阱内的最大电子/空穴浓度; (c)辐射复合速率

Fig. 7 Carrier distribution in active region of five-step HRL at different positions in DUV-LD. (a) Electron concentration distribution; (b) maximum electron/hole concentration in quantum well; (c) radiative recombination rate

图 8 为五阶梯 HRL 在 DUV-LD 中 3 个不同位 置时的 V-I和 P-I曲线。可以发现,五阶梯 HRL 在位 置1时有最小的阈值电压、阈值电流和最大的输出功 率(P)。这表明五阶梯 HRL 在位置1处有着更好的电 学特性。

4 结 论

通过在 DUV-LD 引入空穴存储层 HRL 并将其优 化为五阶梯 Al摩尔分数递减的 HRL。仿真结果表 明,该结构可有效改善空穴注入效率低的问题,从而提 高其辐射复合速率,减小了阈值电压和阈值电流,提高 其电学特性。此外,对五阶梯 HRL 在 DUV-LD 中的 不同位置进行了研究。结果表明,五阶梯 HRL 位于 LQB和UWG 之间时可有效提高 EBL 电子势全高度 和减小 EBL 空穴势全高度,从而增加有源区内载流子 浓度,提高器件的辐射复合速率,改善器件的电学特 性,使器件性能最优。

参考文献

- [1] Kojima K, Yamaguchi A A, Funato M, et al. Impact of onpolar plane for deep ultraviolet laser diodes based on AlGa/AlN quantum wells[C]//22nd IEEE International Semiconductor Laser Conference, September 26-30, 2010, Kyoto, Japan. New York: IEEE Press, 2010: 101-102.
- [2] Ruhnke N, Müller A, Eppich B, et al. Compact deep

第 59 卷 第 23 期/2022 年 12 月/激光与光电子学进展

研究论文

UV system at 222.5 nm based on frequency doubling of GaN laser diode emission[J]. IEEE Photonics Technology Letters, 2018, 30(3): 289-292.

- [3] Sato K, Yamada K, Ishizuka S, et al. AlGaN-based ultraviolet-B laser diode at 298 nm with threshold current density of 25 kA/cm²[C]//2020 IEEE Photonics Conference, September 28-October 1, 2020, Vancouver, BC, Canada. New York: IEEE Press, 2020: 1-2.
- [4] Mi Z T, Zhao S R, Liu X H. AlGaN nanowire deep ultraviolet light emitting diodes and lasers[C]//2017 Conference on Lasers and Electro-Optics Europe &. European Quantum Electronics Conference (CLEO/ Europe-EQEC), June 25-29, 2017, Munich, Germany. New York: IEEE Press, 2017: 1.
- [5] Kirste R, Mita S, Reddy P, et al. Development of near UV laser diodes[C]//2019 IEEE Research and Applications of Photonics in Defense Conference, August 19-21, 2019, Miramar Beach, FL, USA. New York: IEEE Press, 2019: 1-3.
- [6] Miller M A, Crawford M H, Allerman A A, et al. Smooth and vertical facet formation for AlGaN-based deep-UV laser diodes[J]. Journal of Electronic Materials, 2009, 38(4): 533-537.
- [7] Sulmoni L, Mehnke F, Mogilatenko A, et al. Electrical properties and microstructure formation of V/Al-based ncontacts on high Al mole fraction n-AlGaN layers[J]. Photonics Research, 2020, 8(8): 1381-1387.
- [8] Guo W, Chen L, Xu H Q, et al. Revealing the surface electronic structures of AlGaN deep-ultraviolet multiple quantum wells with lateral polarity domains[J]. Photonics Research, 2020, 8(6): 812-818.
- [9] Yu H B, Ren Z J, Memon M H, et al. Cascaded deep ultraviolet light-emitting diode via tunnel junction[J]. Chinese Optics Letters, 2021, 19(8): 082503.
- [10] Hirayama H. Research status and prospects of deep ultraviolet devices[J]. Journal of Semiconductors, 2019, 40(12): 120301.
- [11] Sato K, Yasue S, Yamada K, et al. Room-temperature operation of AlGaN ultraviolet-B laser diode at 298 nm on lattice-relaxed Al_{0.6}Ga_{0.4}N/AlN/sapphire[J]. Applied Physics Express, 2020, 13(3): 031004.
- [12] 王军喜,闫建昌,郭亚楠,等.氮化物深紫外LED研究 新进展[J].中国科学:物理学力学天文学,2015,45(6): 067303.
 Wang J X, Yan J C, Guo Y N, et al. Recent progress of research on III-nitride deep ultraviolet light-emitting diode [J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2015,45(6):067303.
- [13] Kneissl M, Seong T Y, Han J, et al. The emergence and prospects of deep-ultraviolet light-emitting diode technologies[J]. Nature Photonics, 2019, 13(4): 233-244.
- [14] Omori T, Ishizuka S, Tanaka S, et al. Internal loss of AlGaN-based ultraviolet-B band laser diodes with p-type AlGaN cladding layer using polarization doping[J]. Applied Physics Express, 2020, 13(7): 071008.
- [15] Zhang Y, Kao T T, Liu J P, et al. Effects of a stepgraded Al_xGa_{1-x}N electron blocking layer in InGaN-based laser diodes[J]. Journal of Applied Physics, 2011, 109

(8): 083115.

- [16] Cai X F, Li S P, Kang J Y. Improved characteristics of ultraviolet AlGaN multiple-quantum-well laser diodes with step-graded quantum barriers close to waveguide layers[J]. Superlattices and Microstructures, 2016, 97: 1-7.
- [17] Zhang C, Sun H Q, Li X N, et al. Performance improvement of AlGaN-based deep ultraviolet lightemitting diodes with double electron blocking layers[J]. Chinese Physics B, 2016, 25(2): 028501.
- [18] Huang P Y, Xiao L F, Chen X F, et al. Efficiency improvement of AlGaN-based deep ultraviolet LEDs with gradual Al-composition AlGaN conduction layer[J]. Optoelectronics Letters, 2020, 16(4): 279-283.
- [19] Hou Y F, Guo Z Y. Enhancement of hole injection in deep ultraviolet light-emitting diodes using a serrated P-type layer[J]. Optics Communications, 2019, 433: 236-241.
- [20] Zhang Z H, Huang Chen S W, Zhang Y H, et al. Hole transport manipulation to improve the hole injection for deep ultraviolet light-emitting diodes[J]. ACS Photonics, 2017, 4(7): 1846-1850.
- [21] Lu T P, Li S T, Liu C, et al. Advantages of GaN based light-emitting diodes with a p-InGaN hole reservoir layer[J]. Applied Physics Letters, 2012, 100(14): 141106.
- [22] Hou Y F, Zhao D G, Liang F, et al. Characteristics of InGaN-based green laser diodes with additional InGaN hole reservoir layer[J]. Vacuum, 2021, 186: 110049.
- [23] Xing Z Q, Zhou Y J, Liu Y H, et al. Reduction of electron leakage of AlGaN-based deep ultraviolet laser diodes using an inverse-trapezoidal electron blocking layer [J]. Chinese Physics Letters, 2020, 37(2): 027302.
- [24] Vurgaftman I, Meyer J R, Ram-Mohan L R. Band parameters for III-V compound semiconductors and their alloys[J]. Journal of Applied Physics, 2001, 89(11): 5815-5875.
- [25] 臧俊微. 280 nm AlGaN 基半导体激光器有源区结构的 仿真研究[D]. 郑州:郑州大学, 2018.
 Zang J W. Simulation research on active area structure of 280 nm AlGaN semiconductor laser[D]. Zhengzhou: Zhengzhou University, 2018.
- [26] 刘恩科,朱秉升,罗晋生.半导体物理学[M].7版.北 京:电子工业出版社,2011.
 Liu E K, Zhu B S, Luo J S. Physics of semiconductors
 [M]. 7th ed. Beijing: Publishing House of Electronics industry, 2011.
- [27] 姚中辉,陈红梅,王拓,等.P型调制掺杂1.3 μm InAs/GaAs量子点激光器[J].中国激光,2021,48(16):1601001.
 Yao Z H, Chen H M, Wang T, et al. P-modulation doped 1.3-μm InAs/GaAs quantum dot lasers[J]. Chinese Journal of Lasers, 2021, 48(16):1601001.
- [28] Prasad S, Mondal R K, Chatterjee V, et al. Double-side step-graded AlGaN electron blocking layer for nearly droop-free GaN-based blue LEDs[J]. Superlattices and Microstructures, 2019, 132: 106167.
- [29] Fan X C, Sun H Q, Li X N, et al. Efficiency improvements in AlGaN-based deep ultraviolet lightemitting diodes using inverted-V-shaped graded Al composition electron blocking layer[J]. Superlattices and Microstructures, 2015, 88: 467-473.